单精度浮点数什么意思(浮点数的由来及运算解析)
数学是自然科学的皇后,计算机的设计初衷是科学计算。计算机的最基本功能是需要存储整数、实数,及对整数和实数进行算术四则运算。
但是在计算机从业者的眼中,我们知道的数学相关的基本数据类型通常是整型、浮点型、布尔型。整型又分为int8(用8位表示的整数)、uint8(用8位表示的无符号整数)、int16、uint16、int32、uint32,浮点型又分为float16(半精度,FP16)、float32(单精度)、float64(双精度)。今天,我们就来聊聊浮点数。
#1 为什么叫浮点数?
由于实数在计算机中的表示方法是以小数点浮动的方式表示的,所以称之为浮点数。
1、计算机中的整数表示
众所周知,计算机最底层是二进制计数。用二进制数表示整数很简单(本文不考虑原码、反码、补码,也不考虑大端模式和小端模式),最高位表示符号位,0表示正数,1表示负数,余下的位表示二进制值。
int8即使用8位表示的整数,最高位用来表示正负符号,还有7位表示数字,其所能表示的范围是[-128,127]。有人可能会想,00000000表示正0,10000000表示负0,int8表示的范围岂不是[-128,127]吗?但用两个序列表示同一个数,这本身就是一种浪费。如果计算机从最底层就开始这样浪费,那还了得?所以节约资源,从我做起。
2、用定点数来表示实数
最高位表示符号,然后再约定整数占几位,余下的位都是小数。从另一个角度来说,即小数点的位置是固定的。优点是计算很方便,缺点是存储的数据范围有限。
3、用浮点数来表示实数
最高位表示符号,再约定一部分二进制位表示指数域,余下的是数域。优点是能表示的数据范围很大,缺点是计算慢。但是80286出现后,有了浮点协处理数(FPU),浮点数表示方式成为了主流。
IEEE-754是IEEE制定的二进制浮点数算术标准(IEEE即电气与电子工程师协会,这个协会制定了很多计算机领域的标准),也计算机中表示浮点数的行业标准,于1985年正式采用,2008年和2019年又分别进行了完善和修订。
我们以最常见的64位、32位、16位浮点数为例,如下图所示:

FP64称为双精度浮点数,一共64位,1位表示正负符号,11位表示指数,52位表示小数,可表达的精度范围是:

FP32是我们最常用的浮点数,也称为单精度浮点数,一共32位,1位表示正负符号,8位表示指数,23位表示小数,可表达的精度范围是:

FP16称为半精度浮点数,一共16位,1位表示正负符号,5位表示指数,10位表示小数,可表达的数据范围是:



我们再以最简单的16位浮点数为例,如下图所示:


互联网上有一些很有意思的网页,能帮我们更深刻的认识到浮点数。我们挑选了由纽约市立大学计算机科学系提供的网页,网址为
https://babbage.cs.qc.cuny.edu/ieee-754.old/decimal.html(或者也可以打开
https://baseconvert.com/ieee-754-floating-point)。

接下来,我们随机输入一个浮点数,例如38.375,然后点击Rounded,再看看其在计算机中是如何表达的。

- 最高位是31位(位序从0开始),此处为0,表示是正数
- 接下来是指数域,从30位到23位一共是8位,最大能表示的数是256,最小能表示的数是0
- 指数域的值要减掉127,此处指数域是10000100,即132-127=5
- 余下的都是尾数域,从22位到0位一共是23位,此处是1.00110011(小数点前面的1是最终的32位数据里不存在的,因为尾数规范化后都是以1开始,所以这个1都是省略的)
最高位好理解,但是指数域5和尾数域的1.00110011是怎么得到38.375的?请各位先思考一下再看下面的计算过程。

移动数域的小数点位置,这个操作是不是浮点?我认为,这就是浮点数的由来。
接下来还有一个很有意思的问题,即浮点数的精度问题。以0.3这个数为例,我们输入0.3后,分别点击Not Rounded和Rounded(因为这里是二进制数,不适合翻译为四舍五入,所以我用原单词替代),分别得到如下两图:
Not Rounded模式下

Not Rounded模式下,数域为1 .00110011001100110011001,最终计算得到的十进制数是0.299999总是比0.3小一点点。
为什么会这样?因为十进制的有穷数0.3,转换为二进制数后是一个无穷数(1001无限循环),如果直接扔掉后面的数,那么最终转换后的十进制数据就会少了一点点,变成了0.29999999。
Rounded模式下

Rounded模式下,数域为1 .00110011001100110011010,也就是向前进了一位,这样最终得到的数变成了0.30000001,即比实际的十进制数0.3大了一点点。
所以在实际编程中,不建议对浮点数数据直接进行等值比较,一般使用区域比较,因为浮点数存在精度问题。c/c++程序员们遇到的问题0.1 + 0.2 = 0.30000000000000004也是这个原因导致的。
#2 BF16(Brain Float)
BF16是一种全新的浮点数格式,专门服务于人工智能和深度学习,最开始是Google Brain发明并应用在TPU上的,后来Intel,Arm及一众头部公司都在广泛使用。
BF16也是用16位来表示浮点数,但是是用8位表示指数,用7位表示小数,此时BF16表示的整数范围和FP32是一样的,小数部分则存在着很大的误差。
以前大部分的AI训练都使用FP32,但有相关的论文证明,在深度学习中降低数字的精度可以减少tensor相乘所带来的运算功耗,且对结果的影响却并不是非常大,且更少的尾数也使它能够拥有更小的芯片面积。因此在模型越来越大、计算越来越密集的人工智能领域,BF16也得到了广泛的应用。
#3 模型量化及INT8
从数据在计算机上的表示来看,整数运算比浮点数运算要快很多。而训练一个深度神经网络模型得到的参数通常都是FP32类型的,我们将其部署到终端NPU上时,通常需要将其量化为8位整数(即int8或者uint8)。
为什么人工神经网络模型要量化?因为终端的算力、资源都是有限的,量化后有如下好处:
- 减小了模型尺寸。原有的一个参数如果是32位表示的实数,量化后用8位整数来表示,这样模型能缩小至原模型大小的四分之一;
- 降低了内存和存储占用;
- 降低了功耗;
- 提升了计算速度。
这些特点都能有效地帮助模型部署在终端设备上,虽然量化会带来一些精度上的损失,但通过良好的量化算法和设计有效的算子,量化后的模型在终端上能够拥有接近云端模型的准确率,同时能极大节约云端算力和网络传输成本。
相关文章
-
金卡白金卡有什么区别(信用卡等级差异详解)
【额度差异】普卡是信用卡等级中的最底级别,根据申请人的资质,授信额度在0-10000不等,通常不会高于1万元人民币。金卡的额度会略高于普卡,一般申请人已持有普卡并且用卡记录良好的情况下,银行才会酌情批给金卡。目前我国金卡的授信额度一般在1万到5万元之间。白金卡又称钻石卡,是目前我国各银行发行的信用卡
2025-06-07 01:35:13
-
吞的成语有哪些(“吞”的成语集锦)
半吞半吐、气吞山河、生吞活剥、吞吞吐吐、狼吞虎餐、虎踞鲸吞、虎咽狼吞、蚕食鲸吞、鳌掷鲸吞、神木愣吞、蛇食鲸吞、气忍声吞、气断声吞、吞声饮泪、吞风饮雨、吞声忍泣、吞刀吐火、吞天沃日、吞炭为哑、吞言咽理、吞花卧酒、吞舟之鱼、吞舟漏网、吞纸抱犬、吞云吐雾、吞符翕景、吞凤之才、吞声忍恨、吞声饮泣、吞声饮气
2025-06-06 13:27:39
-
买卖房子要交这8个税,这下终于弄懂了
朋友昨天打电话说他准备买一套二手房,中介给他说要交几万块的税,但他不知道有没有算错,也不知道交了些什么税,哪些税收可以获得优惠减免?于是我给他详细讲了下买卖房屋会涉及的8个税种,并记录在这里以备需要的人了解下,下面都用一个面积100㎡、成交价200万元的房屋来模拟计算需要缴纳的税款。1.契税说契税之
2025-06-06 11:53:58
-
铝锅烧干变黑为什么(新铝锅变黑了 罪魁祸首竟然是烧了水)
新买回来的铝锅,除了水以外就没有煮过其他东西,铝锅中被水浸过的地方,竟都变成了灰黑色。难道水会使铝锅变黑吗?原来,通常的水,表面看起来很干净,实际上,它含有钙盐、镁盐、铁盐等有机物。而水中的“铁盐”就是使铝锅变黑的“祸首”。既然水中的“铁盐”是祸首,那么我们在第一次用新铝锅的时候就要避免烧水。最好先
2025-05-09 10:51:28
-
什么床环保等级最高(装修完如何选床才能环保?)
内行人怎么选床既环保又舒服还实惠?怎么选床环保?舒服?今天告诉你内行人才关注的选购要点。1.区分床架,市面上基本就三种。第二种铁艺床,价格低还没有甲醛,但如果软装没有搭配好的话有点low。建议多看看参考图片。还有就是记得把螺丝拧紧一点,不然晚上你一睡觉它就吱吱嘎嘎响。第三种软包床,它的靠背很舒服,可
2025-05-09 09:37:34